intentionality & the post-covid cultural landscape

Individually we are no match for nature. Together we are.

Stewart Simonsen, Assistant Director-General, World Health Organization; in conversation with Fareed Zakaria, GPS, 24 May 2020

Congress will have to think with knowledge that we will have another crisis.”

Gary Cohn, Former Director, National Economic Council, Former President & Chief Operating Officer, Goldman Sachs, in conversation with Fareed Zakaria, GPS, 24 May 2020

Given the health, governance, and legal risks posed by the coronavirus and the covid-19 response, a primary issue affecting us all, including galleries, museums, and cultural organizations around the world, has been how to limit its spread. As a prophylactic vaccine has not yet been developed, decisions were made to limit possible exposure and contagion by distancing people from one another. In many countries all organizations and enterprises except those providing what have been considered “essential” services were closed, museums included.

Museums are public spaces that welcome people through their doors into shared spaces to look at art together. They have had to grapple with the questions of whether or not and how to engage their audiences while closed. They grapple now with the question of how best to re-open while continuing to mitigate the risk of contagion and spread.

The learning curve has been steep and rapid. Marc Spiegler, Global Director of Art Basel, and museum leaders from Asia, Europe, and the United States addressed the learning curve and responses of the museum sector during a webinar discussion that took place on 21 May,  “How will the pandemic change institutions?

Dr. Zoé Whitley, director of the Chisenhale Gallery, London, Anne Pasternak, Shelby White and Leon Levy Director of the Brooklyn Museum, New York City, Phlip Tinari, director and CEO of the UCCA Center for Contemporary Art, Beijing, and Dr. András Szántó, author and cultural strategy advisor, New York City, shared their thoughts and perspectives on the missions, priorities, and activities of their organizations, how they were managing during the pandemic and concomitant shut-down, risks, risk management, and ways to make it possible to be back in physical spaces looking at art with other people.

“What roles should institutions play in the post-covid cultural landscape, assuming you can even guess what the landscape is going to be?”

Acknowledging that “we have a responsibility to re-think how we remain relevant to our audiences,” Dr. Whitley asked, “how do you start charting a new path under these incredibly strange circumstances?”

“I think that’s precisely the question,” she continues. “What might rank as the world’s worst hypothetical interview question: how would you lead an organization remotely in the midst of a global pandemic? And you would think it was so absurd as to be not really be able to entertain it. And yet here we are.”

While understanding that the pandemic and the global response caught many off guard, knowing what we now know, we may need to revisit underlying assumptions of absurdity and re-map our thinking. The pathogen and pandemic did not come out of nowhere.  See: “Q&A: Could climate change and biodiversity loss raise the risk of pandemics?“.

Pathogens such as the coronavirus that is causing the covid-19 response occur abundantly in nature. As we, through our many behaviors, draw closer to wild animals, for instance, and draw them closer to us, and unless we work consistently and with intention to acknowledge, manage, and mitigate risk, we may expect ever more such pandemics.

The UCCA Center for Contemporary Art in Beijing may serve as a case study. Having closed its doors on 24 January, the UCCA re-opened to the public on 21 May. 

Philip Tinari reflected on the disappearance of everyday routine during the closure, the mood of solemnity of everyday existence, the poignancy of being back in physical space looking at art with people,  and the freedom to enter into a public space and look at art.

He observed that while “it’s poignant and it’s just wonderful to be back in physical space looking at art with people, … that can only happen because of larger dynamics in the society.”

“The freedom to enter into a public space and look at art,” the freedom to enter the UCCA Center for Contemporary Art, and Beijing’s 798 Art District in which it is located, is afforded by measures taken to control the contagion and spread.

“To even enter into 798, one needs to have one’s temperature taken and one needs to show a kind of virtual pass which is generated by a government app that, you know, tracks your data and proves that you have not been in any high-risk areas for the last 14 days or 21 days, and even, in some cases, synchs to facial-recognition thermometers that are around town. So, there’s a complete panopticon, and we’re the indirect beneficiaries of it.

“And at our door, there’s another temperature check as there is at the entrance of any restaurant or store. And masking here is completely mandatory and universal. And so then it just becomes a question of how to be responsible and keep things disinfected and use our guards to keep people distanced.

From “How technology is safeguarding health and livelihoods in Asia,” Oliver Tonby, Jonathan Woetzel, Noshir Kaka, Wonsik Choi, Jeongmin Seong, Brant Carson, and Lily Ma,McKinsey & Company, 12 May 2020

“I guess all to say that we’re all kind of working inside the contexts where we find ourselves. And this one, for the draconian nature of certain measures, they paradoxically allow for the freedom to enter into a public space and look at art.”

As risks abound, continue, and even, arguably, increase, it is crucial to plan and conduct business smartly, in a forward-looking manner, clearly articulating desired outcomes, on the one had, and negative externalities, that are increasingly no longer external, on the other.

UCCA has postponed shows that were on the calendar for this year, “many of which involved intense overseas collaborations and were not going to happen as scheduled.” Yet, learning as early as early March that the museum re-opening would take place on 21 May, the first date also of the re-scheduled Beijing Gallery Week-end, Mr. Tinari and the museum curators realized “that there was no way we could get to May 21 and not have something to show everyone.”

“And so I sat in a room with my curators for about a week. And we came up with an exhibition that we titled “Meditations in an Emergency” after the Frank O’Hara anthology which kind of looks at the post-covid world from five different angles. Everything from the disappearance of everyday routine to the relationship between humans and animals to the proliferation of a sort of de-centered polyphonic or contradictory narrative around news and information.

“It’s a 26-artist group show that’s actually, I don’t mean to brag or anything, but it’s really beautifully installed. And it’s poignant and it’s just wonderful to be back in physical space looking at art with people.”

Zhang Hui, “Just Line in the Mirror 2” (2018, oil on canvas).
Credit: Zhang Hui and UCCA, Center for Contemporary Art, Beijing: “Meditations in an Emergency,” 21 May – 30 August 2020

Thinking forward, Mr. Tinari observes “a certain solemnity to just everyday existence now. People are ready to come. And in a way that’s a very not the worst frame of mind with which to enter into an exhibition.”

What he’s been calling “the new intentionality,” engaging in activities “with a very specific purpose and for a limited duration,” applies, he says, to programming as well. “It’s not that we won’t continue to do big international shows but we’ll do them for specific reasons with kind of very measurable goals in more measured ways.”

See:

Art Basel, “How will the pandemic change institutions?“, YouTube, 22 May 2020

Oliver Tonby, Jonathan Woetzel, Noshir Kaka, Wonsik Choi, Jeongmin Seong, Brant Carson, and Lily Ma, “How technology is safeguarding health and livelihoods in Asia,” McKinsey & Company, 12 May 2020

Zoé Whitley, Star Curator Behind Acclaimed ‘Soul of a Nation’ Show, Named Director of London’s Chisenhale Gallery,” ARTnews, 17 January 2020

UCCA, Center for Contemporary Art, Meditations in an Emergency, 21 May 2020 – 30 August 2020


Q&A: Could climate change and biodiversity loss raise the risk of pandemics?

Q&A: Could climate change and biodiversity loss raise the risk of pandemics?

Daisy Dunne, Carbon Brief, 15 May 2020

***

Across the world, millions of people have tested positive for Covid-19 – and countless more have seen their lifestyles completely transformed as a result of the virus.

It is not yet known exactly what triggered the current outbreak, but researchers suspect that the virus passed from bats to humans through an unknown intermediary animal, possibly a pangolin.

Politicians in the UK have called this pandemic a “once-in-a-century” crisis. But scientists have warned that the ongoing disturbance of species through human activities and climate change could be raising the risk of potentially pandemic-causing diseases passing from animals to humans.

The study of the “spillover” of disease from animals to humans has received renewed focus in light of the pandemic. The Intergovernmental Panel on Climate Change (IPCC) – a major international collaboration of climate scientists – is now looking into how the influence of warming on such events could be included in its next major climate report due next year.

In this explainer, Carbon Brief examines what is known about how climate change and biodiversity disturbance, including habitat loss and human-animal conflict, could influence the risk of diseases being transmitted from animals to humans.

How does an animal-to-human disease spillover turn to a pandemic?

When humans come into contact with other animals, they can pass harmful pathogens between one another. The passing of an infection or disease from a vertebrate animal to a human is known as a “zoonosis”, according to the World Health Organisation (WHO). (Vertebrate animals include mammals, birds and reptiles, but not insects, such as mosquitoes.)

Such diseases have a major impact on health, accounting for two-thirds of all human infectious diseases and three out of four newly emerging diseases.

Serious diseases that have spilled over from animals to humans include Ebola in Africa, Marburg in Europe (and subsequently in Africa),  Hendra virus in Australia and severe acute respiratory syndrome (SARS) coronavirus and Nipah virus in east Asia. Some have gone on to have a lasting, global impact, such as HIV/AIDS and swine flu (H1N1). The current Covid-19 pandemic was also most likely caused by a spillover.

The number of potentially harmful viruses circulating in mammal and bird populations that have not yet spilled over to humans is estimated to be up to 1.7m, according to the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). (IPBES is an independent group of international researchers monitoring biodiversity issues).

The spillover of disease from animals to people can happen in many ways, including directly through animal bites, the consumption of raw or undercooked animal meat or products such as milk, or through contaminated water. Diseases can also spread indirectly if humans come into contact with a surface that has been contaminated by an infected animal. Both wild animals and livestock can pass on disease.

A mouse opossum (Marmosa sp.) raids the trash in Peru. Credit: Anton Sorokin / Alamy Stock Photo
A mouse opossum (Marmosa sp.) raids the trash in Peru. Credit: Anton Sorokin / Alamy Stock Photo

(Sometimes, transmission occurs through an intermediary species that can carry the disease without getting sick. Scientists suspect this is how the Covid-19 pandemic started.)

Out in the wild and in settings where humans and animals come into contact, these kinds of interactions happen regularly – and it is rare for one to end with a human being infected by a new disease, explains Dr David Redding, a research fellow at the Zoological Society of London. He tells Carbon Brief:

“There are lots of different factors that need to all overlap at the same time for there to be a contact that is both effective in terms of transferring a live pathogenic organism and then also for that very rare situation where that pathogen has an adaptation that allows it to invade our immune system.”

Even if a disease is effectively transmitted from an animal to a person, it is unlikely that they will then pass it on to someone else, he adds:

“I would say most – possibly 99% – of all diseases that are caused in that way can’t then be passed on. So we’ve got another ‘filter’ that dictates that people have to be infected in a particular way that allows them to shed viruses effectively to other people.”

This “virus shedding” can happen in various ways. Like other respiratory diseases, Covid-19 can be transmitted when a carrier coughs or sneezes in close proximity to another person. (Scientists are still debating whether the virus can also be passed on in other ways.)

The ability of the new pathogen to spread directly from person to person is a key ingredient for a disease to take hold in a population, Redding says. (Some animal-borne diseases require a vector to spread from person to person, such as West Nile virus and Lyme disease.)

An illness outbreak is said to become an “epidemic” when its impact on people in a single community or region is “clearly in excess of normal expectancy”, according to the WHO. The term “pandemic” describes the worldwide spread of a new disease. (When a disease is “endemic” it has a continuous presence in a population or area.) 

Since 1900, there have been pandemics at “intervals of several decades”, according to the WHO. The worst in this time period was Spanish flu, which killed an estimated 50 million people from 1918-19.

A group of people standing outdoors wearing masks over their mouths, probably taken during the Spanish Flu epidemic of 1918. Credit: Niday Picture Library / Alamy Stock Photo
A group of people standing outdoors wearing masks over their mouths, probably taken during the Spanish Flu epidemic of 1918. Credit: Niday Picture Library / Alamy Stock Photo

Prior to Covid-19, every outbreak considered to be a pandemic by the WHO since 1900 has been caused by influenza, a virus that transmits from person to person. Some new strains of flu originate in animals, such as bird flu, but most new strains arise in human populations – and so would not be considered animal-borne.

There are many factors that can determine whether an outbreak reaches epidemic or pandemic status. These include human factors, such as preparedness and early action to prevent the illness from spreading, and also the traits of the pathogen itself, says Redding:

“The characteristics of the pathogen and its ability to spread are two key components in causing these rare events.”

For instance, if the pathogen causes very severe illness, the sufferer is less likely to be able to travel to a new place to pass on the disease, Redding says. This is also the case if the mortality rate is particularly high.

In contrast, if the disease causes mild to undetectable symptoms for at least some sufferers – as is the case with Covid-19 – it is more likely that people will inadvertently spread it to new places, he says.

This may go some way to explaining why previous serious animal-borne disease outbreaks have not reached pandemic status, Redding explains.

Members of a burial team prepare for a burial in Komende Luyama village. Eastern Sierra Leone was a hot spot for Ebola for several months, but eventually authorities managed to bring down infection rates to just a few cases per week. 17 October 2014 Credit: Tommy E Trenchard / Alamy Stock Photo
Members of a burial team prepare for a burial in Komende Luyama village. Eastern Sierra Leone was a hot spot for Ebola for several months, but eventually authorities managed to bring down infection rates to just a few cases per week. 17 October 2014 Credit: Tommy E Trenchard / Alamy Stock Photo

For example, Ebola – a disease initially spread to humans by fruit bats – has caused several serious epidemics in West Africa, but has not established itself on a worldwide scale. It has a mortality rate of around 50%. The mortality rate of Covid-19 is not yet known, though it is likely to be below 10%.

It is also worth noting that the likelihood of a disease turning to a pandemic has been heightened in recent decades by increased global connectivity, particularly through frequent air travel, Redding says:

“Plagues in the medieval times took years to spread across Asia. Whereas we look at today’s outbreaks and we can see that they can spread in hours.”

Overall, for a spillover event to turn into a pandemic, there must be a “perfect storm” of several complex factors all occurring at the same time – which, at present, does not happen very often, says Redding: “I think history shows us that these sort of large outbreaks happen a couple of times a century.”

Could climate change and biodiversity disturbance affect the risk of spillover?

Every new animal-borne disease starts with humans coming into contact with wildlife. And it is likely that climate change and the disturbance of biodiversity could play a role in shaping the frequency, timing and location of these meetings, says Prof Hans-Otto Poertner, head of biosciences at the Alfred Wegener Institute (AWI) and co-chair of the impacts chapter of the next major assessment report from the IPCC. He tells Carbon Brief:

“Climate change is clearly a factor that can influence these relationships. Climate change shapes the biogeographical distribution of species. If, in the future, we see species moving into areas where humans are prevalent, we could see new opportunities for pandemics to evolve.”

Research has shown that climate change is shifting where species live, both on land and in the ocean. This is because, as temperatures increase and rainfall levels change, some species are being forced to seek out new areas with climate conditions they are able to tolerate. (Species that are not able to adapt could face extinction.)

A review published in Science in 2017 looking into 40,000 species across the world found that around half are already on the move as a result of changing climate conditions.

In general, species are seeking cooler temperatures by moving towards the Earth’s poles. Land animals are moving polewards at an average rate of 10 miles per decade, whereas marine species are moving at a rate of 45 miles per decade, according to the review.

Dugong feeding in the seagrass bed, Dimakya Island, Palawan, Philippines. Credit: Nature Picture Library / Alamy Stock Photo

However, the movement of animals is complicated by other factors, such as the changing availability of food, the shifting distribution of predators and changing patterns of human land-use, the review says. This makes it difficult to predict exactly where species will move to.

It is likely that the movement of species will have consequences for human health, says Prof Birgitta Evengard, a senior researcher of infectious diseases at Umea University in Sweden, who was one of the authors of the review. She tells Carbon Brief:

“When land-based animals move, they bring with them their [viruses] – and they will spread them.” 

So far, there has not been a great deal of research into how climate change-driven shifts to animal ranges could affect the chances of disease spillover on a global scale, says Poertner.

In one example, a research paper by Redding found that climate change could heighten the risk of new Ebola outbreaks in various parts of Africa by 2070.

This is because climate change could cause regions that are currently desert to become warmer and wetter, leading to the formation of the lush plants that bats use as a habitat. The movement of bats into these new areas could increase contact between them and humans, increasing the chances of disease spillover, the study found.

A fruit bat (flying fox) in Tissamaharama, Sri Lanka. Credit: paul kennedy / Alamy Stock Photo
A fruit bat (flying fox) in Tissamaharama, Sri Lanka. Credit: paul kennedy / Alamy Stock Photo

Another study found that climate change could enhance the risk of spillover of the Hendra virus, an animal-borne disease that can pass from flying foxes to humans through horses, which are also affected by the virus.

The virus was first identified when an outbreak broke out in Hendra, a suburb in Brisbane, Australia, in 1994. Since then, there have been at least eight separate outbreaks along the coast of northern Australia, according to the WHO. It has a mortality rate of 50-75%.

Recorded Hendra virus outbreaks in Australia. Source: WHO

The research found that climate change could cause the geographic range of flying foxes to expand southwards and further inland. “Spillover events could potentially increase farther south, and inland with climate change,” the authors say.

Elsewhere, a recent preprint – a preliminary study that has not yet completed peer review – suggests that climate change could drive substantial global increases in the passing of novel diseases from mammals to humans by 2070.

Using modelling, the study maps where around 4,000 mammals species and the diseases they carry are likely to move to by 2070. It finds mammals are “predicted to aggregate at high elevations, in biodiversity hotspots, and in areas of high human population density in Asia and Africa, sharing novel viruses between 3,000 and 13,000 times”.

The authors add: “Most projected viral sharing is driven by diverse hyper-reservoirs (rodents and bats) and large-bodied predators (carnivores).”

It will be important for the IPCC to include the emerging evidence of how climate change could affect the passing of diseases from animals to humans in its next major assessment report, currently due for release in 2021-22, says Poertner:

“We expect to include aspects as they become apparent from the literature.”

The scale of the impact of climate change on wildlife is currently second only to the damage caused by human land-use change, including deforestation, other types of habitat loss and human-animal conflict.

In its first major assessment on biodiversity published in May 2019, IPBES reported that humans have “significantly altered” 75% of the land surface and 66% of the global ocean. During 2010-15, 32m hectares of natural or recovering forest were cleared by humans. This area is roughly equal to the size of Italy.

As a result of ongoing pressures on biodiversity, around one million species are currently threatened by extinction within decades, the report concluded.

The report noted that ongoing pressures on wildlife are likely to increase contact between animals and humans, altering the chances of disease spillover. In chapter three of the full report, the authors say:

“Complex links between increased human disturbance, land-use change, habitat loss/degradation and biodiversity loss have all been linked to increases in the prevalence and risk of zoonotic [animal-borne] disease for a variety of pathogens.”

However, research into how biodiversity disturbance could affect animal-borne disease risk at a global level has so far been limited, it notes:

“Causal mechanisms are only well known for a handful of infectious diseases and it is sometimes hard to pick apart the drivers of disease to isolate the direct effects of environmental change from other human actions.”

Research has shown that bushmeat huntingdeforestation and the trade of wildlife at markets can heighten the risk of diseases passing between animals and humans.

In 2018, a study warned of a possible link between deforestation in southeast Asia and a heightened risk of spillover of novel coronaviruses from bats to humans. The authors say:

“Owing to evolving land-use, bat populations are setting up in areas closer to human dwellings…This increases the risk of transmission of viruses through direct contact, domestic animal infection, or contamination by urine or faeces.”

***

Q&A: Could climate change and biodiversity loss raise the risk of pandemics?

Daisy Dunne, Carbon Brief, 15 May 2020

Published under a CC license. You are welcome to reproduce unadapted material in full for non-commercial use, credited ‘Carbon Brief’ with a link to the article.